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L The likelihood function

The linear regression

The likelihood

Yi = Bixip + Bixia + ...+ Pixix + pi = X;8 + p;i where

i i N(0, 02) is an stochastic error such that x; L p;.
Writing this model in matrix form we get y = X3 + i such
that p ~ N(0, 02l) which implies that y ~ N(X3,0?l). So
the likelihood function is

202

L8, 02 X) = (270%) 3 exp {— Ly~ XB)(y Xﬁ)}

< (0?) Fop {3l X8~ X3) | (@
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LThe prior distribution

The linear regression

Prior distribution

The conjugate priors for the parameters are:

Blo* ~ N(fo, o°Bo) (2)
02 ~ IG(g/2,60/2) (3)
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LThe posterior distributions

The linear regression

The posterior distributions

This means posterior distributions for 3 and o2 of the form

Blo?,y,X ~ N(8°,02B) (4)
oly, X ~ IG(a*/2,5"2) (5)

where B = (By ' 4+ X'X)™t, W = (By* + X'X)1X'X,
B =B(ByBo+ X'y) = (I — W)y + W}, (6)
a* = ag + n and

8 =30 +y'y + ByBy B0 — B BL5*
= 8o+ (n— k)25 + (B — Bo) [(X'X) ™t + Bo] (B — o)
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L Marginal distributions

The linear regression

Posterior marginal distribution for location parameters

ﬁ’yw tk(a*aﬁ*aH)a
where H = §*/a*B.

B —
(Y72 Iy,

a*

where h/ is the jth diagonal element of H~! and B} is the jth
element of §*.
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L The marginal likelihood

The linear regression

The marginal likelihood

p(y) :/ /W(B | 0250750)7T(02 | 040/2,50/2)L(Y|57027X)
0 B
dazdﬁ

| 4+ XBoX'
_t (xgo,—af’( s ),50>
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L The predictive distribution

The linear regression

The predictive distribution

(1 +xon(;), 5*> -

.y0|.y7X7X0Nt(X05*7 o*
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Gibbs Sampler

The Gibbs algorithm proposes the following transition kernel
for two parameter blocks

P(917 92) = 7T(922|921)7T(921 |912)

where 61 = (011, 012) and 0 = (621, 022). We can see that in
order for the Gibbs sampler to be of use, we must first obtain
the conditional distributions of each parameter block in terms
of the others.
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Gibbs Sampler

Proof that the Gibbs kernel leads to the invariant distribution:
(0,) = / (01)p(6r, 02)
- / (012, 012) (0222 ) (022 B12) 611 s
= m(022|021) [ 7(021]012)7(011, 012)d011d01>
= m(022|021) | 7(021]012)7(012)d012

= 7T(922|921)
= 7T(922’921)7T

7T(921, ‘912)(]‘912

921) = 7T(922, 921) = 7T(92)

—— —

—
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Gibbs Sampler

A word of caution on the careless use of the Gibbs sampler
algorithm:

Caution

Even when the conditional distributions 7(621|612) and
7(022|021) are well defined and can be simulated from, the
joint distribution 7(6,) may not correspond to any proper
distribution. This is specially true when using improper priors,
so care is to be taken! (See Robert & Casella, 2004, section
10.4.3)
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Algorithm

For two parameter blocks
@ Choose a starting value 0&0).
@ At the first iteration, draw

6" from 7(6,]65)),
68 from 7(6,]6%M).

© At the gth iteration, draw

6%8) from (61|60 Y),
0 from m(6,]6%8)).
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L The Gibbs sampler

Algorithm

For d parameter blocks

@ Choose starting values 050), e ,0((10).

Q At the gth iteration, draw
6% from (6,0, 0ED),
0% from (0,08, 667D . glED),

0'€) from m(64)6%, ..., 6%))).
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Simulation Exercise

Initial setting for the simulation:
e N =1000
e = (1.5,-35,2)
@ x; ~ Nn(0,1),x ~ By(0.5), X = (1, x1, %)
o y=XB+p, p~~Ny0,1)
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Simulation Exercise

The Gibbs algorithm for this simulation is therefore
@ Choose a starting value 2.
Q At the gth iteration, draw

B(g) from N3(53*,0*€)B),
o) from ZG(a*/2,6%/2).
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